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Changes in cytosolic Ca2+ concentrations evoke a wide range of cellular responses and
intracellular Ca2+-binding proteins are the key molecules to transduce Ca2+ signaling via
enzymatic reactions or modulation of protein/protein interations (Fig. 1). The EF hand
proteins, like calmodulin and S100 proteins, are considered to exert Ca2+-dependent actions
in the nucleus or the cytoplasm. The Ca2+/phospholipid binding proteins are classified into
two groups, the annexing and the C2 region proteins. These proteins, distributed mainly in
the cytoplasm, translocate to the plasma membrane in response to an increase in cytosolic
Ca2+ and function in the vicinity of the membrane. Ca2+ storage proteins in the endoplasmic
or sarcoplasmic reticulum provide the high Ca2+ capacity of the Ca2+ store sites, which
regulate intracellular Ca2+ distribution. The variety and complexity of Ca2+ signaling result
from the cooperative actions of specific Ca2+-binding proteins. This review describes
biochemical properties of intracellular Ca2+-binding proteins and their proposed roles in
mediating Ca2+ signaling.
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Studies on Ca2+ signalling originated in investigations of
the mechanisms of skeletal muscle contraction, but it is now
accepted that Ca2+ plays critical roles in many cell functions
as an intracellular second messenger. Increasing attention
has recently been paid to Ca2+ signalling and intracellular
Ca2+ binding proteins, because (i) Ca2+ has been demon-
strated to be the key second messenger in a wide variety of
biological phenomena including muscle contraction, secre-
tory events, cell cycle, differentiation, and gene transcrip-
tion; (ii) technical breakthroughs in visualization of intra-
cellular Ca2+ allow resolution of local Ca2+ distribution with
Ca2+-sensitive fluorescent dyes and confocal microscopy;
(iii) more and more proteins which possess Ca2+-binding
domains have been identified in the last decade; and (iv)
information has accumulated on target proteins and related
pathways downstream of Ca2+ binding proteins.

Most Ca2+-binding proteins possess an EF hand domain,
an endonexin fold or a C2 region. On the basis of the
primary structures responsible for the actual binding of
these domains, we propose classification of intracellular
Ca2+ binding proteins as demonstrated in Table I.

This review is aimed at a general coverage of the Ca2+

binding proteins, and their possible functions in intracel-
lular transduction of Ca2+ signals.

1) EF hand proteins
The EF hand is the Ca2+-binding structure originally

found in carp muscle parvalbumin by Kretsinger (1). Later
studies revealed it to be conserved in many Ca2+ binding
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proteins. The EF hand domain is basically composed of 40
amino acid residues with a 12 amino acid loop structure,
directly responsible for the Ca2+-binding domain, sand-
wiched between a pair of a helix domains. Although single
EF hand polypeptide have only a low affinity for Ca2+, their
presence of pairs is associated with high affinity binding.
Phylogenetic studies suggest that the EF hand protein
family may be derived from a 4 EF hand ancestor gene via
a series of tandem gene duplication (2). This view is
supported by a fact that calmodulin, the ubiquitous 4 EF
hand protein, is conserved among all eukaryotic cell types
and that incomplete EF hand structures are often found in
some 3 EF hand proteins (3). Indeed, some of the 3EF hand
proteins in our category are sometimes described as being
4 EF (4). As listed in Table II, calretinin (5), calbindin-
D28K (6) and a few other proteins possess 6 repeats of the
EF hand domain.

Theoretically, one EF hand domain binds one Ca2+ ion.
However, there are some cases where the number of the
binding Ca2+ ions per molecule is smaller than that of the
EF, hands. For example, yeast calmodulin, a 4 EF hand
protein binds 3 Ca2+ ions per molecule (7), and the calpain
light chain (S100 A10, see Table II), a 2 EF hand protein,
has no binding activity (8). Members of the EF hand family
are mainly located within the cytoplasm and nucleus,
although a few have been demonstrated to interact with
membrane lipids when myristoylated.

1-1) 4 EF hand proteins. Troponin C was, to our
knowledge, the first intracellular Ca2+ receptor protein to
be identified in skeletal muscle. It forms the 18 kDa subunit
of the troponin complex and two isoforms of this Ca2+-
binding protein exist: one in fast skeletal muscle binds 4
Ca2+ ions per molecule and the other in slow cardiac muscle,
binds 3 (9). Ca2+ binding to troponin C overcomes the
inhibition by troponin I of actomyosin ATPase activity,
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which is a critical event for stimulus-contraction coupling
in skeletal muscle.

Despite the earlier discovery and many studies on the
function of troponin C, the most well-known representative
of the 4 EF hand protein family is, without doubt, cal-
modulin. This acidic protein was first discovered as a
Ca2+-sensitive and heat-resistant activator of phosphodies-
terase in brain from independent work by Kakiuchi et al.
(10, 11) and Cheung (12). Whereas other EF hand proteins
including troponin C appear to be distributed in a tissue-
specific manner, calmodulin is present in all eukaryocyte
cells examined and mammalian calmodulins share quite
high homologies among all species (3). This Ca2+ binding
protein plays multiple roles in a wide variety of tissues.
Discovery of calmodulin was so significant that scientists
other than muscle physiologists/biochemists took the
plunge into research on Ca2+ binding proteins thereafter.
One typical example is the area of Ca2+ signaling in the
central nervous system, where calmodulin and its target
proteins are highly concentrated.

Calmodulin plays versatile roles in Ca2+-mediated cellu-
lar events, since its target proteins are relatively many and

TABLE I. Classification of calcium binding proteins.
Subdivision Common domain

EF hand proteins 4 EF hand proteins EF hand
3 EF hand proteins //
2 EF hand proteins /;
Other EF hand //

proteins

Ca1+/phospholipid
binding proteins

Ca1+ storage proteins

Annexins
C2 region proteins

Endonexin fold
C2 region

C-domain
(pairs of acidic amino acid residues)

multipotential. It activates a number of important intracel-
lular enzymes including cyclic nucleotide phosphodiester-
ase, protein kinases/phosphatase, nitric oxidase synthase,
adenylate cyclase, and Ca2+-ATPase. Recognition sites for
calmodulin on the individual target proteins seem to be
related (13-15) and although calmodulin is distributed
ubiquitously, it has some tissue-specific actions partly
because the target proteins are localized in a tissue-specific
manner. The multiple roles of calmodulin (16-18) and
Ca2+/calmodulin-dependent protein kinases (CaM kinases)
(19-21) in cell functions have been extensively studied.

Myosin light chain kinase was the first CaM kinase to be
discovered, by Hartshorne and his colleagues (22), and
subsequently, several protein kinases have been found to
be Ca2+/calmodulin-dependent. Glycogen phosphorylase
kinase is exceptional among CaM kinases in that calmodulin
is contained as a subunit of this protein kinase. Among
members of the CaM kinase family, myosin light chain
kinase and glycogen phosphorylase kinase, phosphorylate
only myosin light chain and glycogen phosphorylase, re-
spectively. CaM kinase HI also has a narrow substrate
specificity; its only known substrate is elongation factor II,
suggesting a pivotal involvement in the translational con-
trol of protein synthesis. One of the reasons why calmodu-
lin plays versatile roles in cell functions is that it activates
multifunctional protein kineses such as CaM kinase I, II,
IV, and V which act on a broad range of substrates, though
their individual substrate specificities and tissue distribu-
tions are distinct. CaM kinase V seems to be an isoform of
CaM kinase I (23). Some of the multifunctional CaM
kinases were recently found to be phosphorylated and
activated by a novel CaM kinase (24) which has been now
cloned and suggested to be involved in the CaM kinase
cascade and to amplify calmodulin-mediated Ca2+-signaling
(25, 26).

calcium

Ca2+

C2 region protieins
annexins

^cytoplasm /biomembranes

• Ca2+ storage proteins
• EF hand proteins
• annexins

Fig. 1. Schematic illustration for distribution of intracellular CaJ+ binding proteins.
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TABLE n. The EF hand protein family.

Calmodulin
Troponin C
Myosin light chains

Calpain large subunit

small subunit

Caltractin
Calcineurin B subunit

Grancalcin
Parvalbumin
Oncomodulin
Apoaequorin
Recoverin

S-modulin

Visinin
VILIP
Neurocalcin
Hippocalcin
S100A1
S100A2
S100A3
S100A4

S1OOA5
S100A6
S100A7
S1OOA8

S100A9
S100A10
S100B

S1OOC
S1OOP
Calbindin-D9K
S1OOF-P

S1OOF-T
Calgranulin C
CeNS
CP-lO
Calsensin
Calbindin-D28K
Calretinin
Reticulocalbin
ERC-55

Synonyms

Phosphoprotein phosphatase 2B

SlOOa
S1OOL, CaN 19
S1OOE
Calvasculin, CAPL, p9Ka, 42A, pEL98,

metastatin, mts 1, 18A2
S1OOD
Calcyclin, 2A9, PRA, CaBP5B10
Psoriasin
MRP-8, calgranulin A, p8, cyctic fibrosis

antigen
MRP-14, calgranulin B p l4 ,
plO, p l l , 42C, calpactin light chain
Si 00/?, neural extension factor

Calgizzarin

CALB3, calbindin 3, 9K ICaBP, 9K cholecalcin
Profilaggrin

Trichohyalin

28K ICaBP, 28K cholecalcin

No of EF
hand motifs

4
4
4

4

4

4
4

4
3
3
3
3

3

3
3
3
3
2
2
2
2

2
• 2

2
2

2
2
2

2
2
2
2

2
2
2
2
2
6
6
6
6

M.W.'
(kDa)
20
18

16-20

80

30

20
19

28(24)
12
11
20
23

26

24
22

22-24
23
11
10
12
11

13
10
12
11

13
10
10

13
10

9

248
11

10
9

28

44
55

Proposed functions'"

Multifunctional (see the text)
Contraction of skeletal and heart muscle
Muscle contraction and cellular motile

events, membrane ruffling
Cytokine processing, formation of ischemic

changes
Cell differentiation/development, platelet

activation
Chromosomal segregation
Cytokine transcription, modulation of

channel activity

Calcinogenesis
Generation of fluorescence by CaI+-binding
Endogenous inhibitor of rhodopsin

kinase/light adaptation
Endogenous inhibitor of rhodopsin

kinase/light adaptation

Signal transduction in sensory cells

Cell growth

Cell growth

Cell growth, cell cycle, exoxytotic events

Cell growth
Neural extension, long term potentiation,

cell proliferation

Calcium transport
Aggregation of keratin intermediate

filaments

Chemotaxis
Calcium transport

•M.W. on SDS-PAGE varies dependency on EGTA. ""Buffering action of Ca'+ was not described as a function.

Pharmacological approaches using specific inhibitors of
calmodulin and its target proteins have provided powerful
tools for investigation of the molecular mechanisms of
calmodulin-mediated Ca2+-signaling in living cells. We
have developed W-7, a calmodulin inhibitor (27), and
KN-62 {28), a CaM kinase inhibitor, from derivatives of
naphthalenesulphonamide and isoquinolinesulphonamide,
respectively. It must be noted that KN-62 was initially
reported to be a specific inhibitor of CaM kinase II {28), but
later studies also revealed the inhibition of CaM kinases I
and IV {29). These inhibitors have facilitated elucidation of
the biological roles of calmodulin and CaM kinases (30) as

well as molecular analysis of the calmodulin molecule {31).
Although calmodulin was first reported to be localized in

the cytoplasm, its presence in the nucleus has been demon-
strated by both biochemical {32) and morphological (33)
techniques. These studies also have indicated that the
nuclear distribution of CaM is influenced by the prolifer-
ative status of the cells. Since some of its target proteins,
such as CaM kinase II and IV, MLCK, calcineurin, and
caldesmon, are also present in the nucleus, it has been
proposed that Ca2+/calmoduUn may regulate DNA replica-
tion/transcription and other nuclear functions (34).

The question arises of why the intracellular concentra-

Vol. 120, No. 4, 1996

 at C
hanghua C

hristian H
ospital on O

ctober 2, 2012
http://jb.oxfordjournals.org/

D
ow

nloaded from
 

http://jb.oxfordjournals.org/


688 I. NiM et al.

tion of calmodulin is so high (> 10 5 M), since most, if not
all, calmodulin- dependent enzymes do not require such
high levels for activation. One possibility is that other
factors such as SlOO proteins may inhibit the activity of
calmodulin-dependent enzymes in the cell (see below).
Luby-Phelps et al. (35) recently investigated the intracel-
lular mobility of calmodulin with a photobleaching tech-
nique using fluorescent-labeled calmodulin, and found that
most was unable to diffuse in the cytoplasm presumably
due to binding to anchoring protein(s). They also suggested
that a small population of intracellular calmodulin is free
and could be responsible for interaction with its bioactive
target proteins.

Myosin is a heterohexamer protein composed of two
heavy chains and two sets of regulatory and essential light
chains. Both these types of light chains possess 4 EF hand
domains. The heavy and regulatory light chains are phos-
phorylated by various protein kinases (36), but myosin
light chain kinase only phosphorylates the regulatory light
chain. Myosin hydrolyses ATP in the presence of actin and
this ATPase activity is increased by phosphorylation of the
regulatory light chain, resulting in smooth muscle contrac-
tion in response to elevation of the intracellular Ca2+

concentration. Distinct isoforms of myosin are also found in
various non-muscle tissues, and their biological roles
remains yet to be fully elucidated. A mechanism similar to
that in smooth muscle has been proposed in endocrine
tissues (37). Phosphorylation of non-muscle myosin light
chains has been suggested to control intracellular events in
endocrine tissues such as priming of catecholamine gran-
ules in chromaffin cells (38).

Caltractin, another 4 EF hand protein distributed in a
wide variety of species, is a structural component of the
basal body complex in Chlamydomonas or the centrosome
in animal cells (39). Its intracellular localization and
similarity to the yeast protein CDC31, which is also local-
ized in the spindle pole body, suggest that caltractin may be
involved in chromosomal segregation (40).

One of the features of the 4 EF hand protein family is that
some members possess enzymatic activities. For example,
the calpain family are Ca2+-dependent proteases and
calcineurin is a Ca2+/CaM-dependent protein phosphatase.
The latter is a heterodimer composed of A (61 kDa) and B
(19 kDa) subunits. The calcineurin B subunit has 4 EF hand
domains which Ca2+ binds, whereas calmodulin binds the A
subunit where the catalytic domain of the protein phos-
phatase lies (41). Both calmodulin binding to the A subunit
and Ca2+ binding to the B subunit are required for maximal
activation of the phosphatase activity (42). Calcineurin
dephosphorylates many phosphoproteins and has recently
attracted a great deal of attention because immunosup-
pressants such as cyclosporin and FK-506, which form
complexes with immunophilins, exhibit immunosuppres-
sion via its inhibition (43, 44).

Calpain was initially described as a Ca2+-activated
neutral cysteine endopeptidase abundant in the cytoplasm
and later shown to have three isofonns (jx, m, and n). The
ft and m isofonns are ubiquitous whereas the n isoform is
rather tissue-specific (45). Calpain proteins are composed
of 80 kDa and 30 kDa subunits, both of which possess 4 EF
hand domains (46). Although in vitro experiments would
suggest that calpain requires higher concentrations of Ca2+

than that normally reached in the cytosol for enzyme

activation, proteolysis by calpain does take place in the cell,
suggesting participation of some other factors in its regula-
tion. For example, acidic phospholipids reduce the Ca2+-
requirement of calpain, while calpastatin inhibits its
proteolytic activity (47). Many proteins, including cyto-
skeletal proteins, membrane receptors, enzymes and cal-
pain itself, are targets of this protease. Autolysis of calpain
activates its proteolytic activity and this enzyme is pro-
posed to be involved in cell differentiation/development
and processing of cytokines, as well as in the pathological
state induced by ischemia (48).

1-2) 3 EF hand proteins. Since the EF hand domain was
originally proposed on the basis of the structure of parval-
bumin, many studies have been focused on the structure of
this 3 EF hand protein (49). In comparison to what we know
from structural analyses, little is known about its roles in
Ca2+ signaling, except for a possible role as an intracellular
Ca2+ buffer. Oncomodulin is also a 3 EF hand protein with
similar exon/intron structures to parvalbumin. In contrast
to parvalbumin, however, oncomodulin is known to activate
phosphodiesterase activity in a Ca2+-dependent manner
like calmodulin (50). It was first found in hepatoma cells
and is known to be abundant in various tumors and
placental tissue (51-53), but its physiological/pathological
functions remain to be elucidated.

Aequorin (more precisely apoaequorin, the polypeptide
part of aequorin), derived from the medusa Aequorea
aequorea, another 3 EF hand protein (54) exhibits the very
distinct feature of generating fluorescence by binding to
physiological concentrations of Ca2+ (55). It has been
therefore found use as a Ca2+ probe to monitor intracellular
Ca2+ concentrations in living cells (56, 57).

Recently, evidence has been obtained supporting partici-
pation of 3 EF hand proteins in visual transduction process-
es via regulating cGMP, the major second messenger in the
phototransduction system in retina cells. Photoactivation of
rhodopsin causes activation of transducin, a trimeric G-
protein, which activates cGMP-specific phosphodiesterase
(Type VI). Activation of phosphodiesterase hydrolyzes
cGMP and close the cGMP-gated cation channel, resulting
in a decrease in intracellular Ca2+ (58, 59). Recoverin, a 3
EF hand protein from bovine retina, was first reported to
activate guanylate cyclase and elevate cGMP levels when
Ca2+ was lowered (60). However, recoverin and S-modulin,
another 3 EF hand protein from frog retina, were, in fact,
found to decrease cGMP levels via sustained activation of
retina-specific cGMP phosphodiesterase in response to Ca2+

increase in dark (61, 62). Studies have revealed that those
two as well as their homologues such as p26 (Gecko), NCS-1
(rat and chick), and Ce-NCS-2 (C. elegans) inhibit rhodop-
sin kinase (63-65), via Ca2+-dependent interactions (66).
Phosphorylation of rhodopsin inhibits transducin to in-
crease the phosphodiesterase activity, resulting in desen-
sitization of the photosensing system. Therefore, Ca2+-de-
pendent inhibition of rhodopsin kinase by recoverin and its
homologues decreases cGMP levels in photoreceptor cells,
maintains the cGMP-dependent cation channel in a closed
state, and eventually prevents visual desensitization by
light. It should be noted that Ce-NCS-1, which has just 2 EF
hand domains, is also reported to inhibit rhodopsin kinase
(65).

Interestingly, neurocalcin, which shares common se-
quences with recoverin and S-modulin (65), is selectively
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localized in sensory neural cells like retina cells (67) and
olfactory nerves (68). Furthermore, similar biochemical
properties of neurocalcin and recoverin have been reported
(69), although their distributions are distinct. cGMP-speci-
fic cation channels, originally discovered in photoreceptor
cells, are also distributed in olfactory neurons and consid-
ered to play a critical role in sensory systems involving
photo- and odor-receptors. Taking these findings into
consideration, it is likely that these members of the 3 EF
hand protein family transduce Ca2+-signals in distinct
sensory systems.

1-3) 2 EF hand proteins. Members of the 2 EF hand
Ca2+-binding protein family are called S100 proteins. The
name was given originally due to the biochemical property
that they remain soluble after precipitation with saturable
(100%) ammonium sulphate (70). The earliest studies
suggested that these proteins might be neuron-specific and
involved in Ca2+ signaling in the nervous system. However,
it was found later that some members of the S100 protein
family are also located in non-neural tissues (71) and that
S100A2 (originally called S100L, see Ref. 72) seems to be
preferentially expressed in non-neural cells (73). S100
proteins have been called various names on the basis of
their biochemical properties, molecular weights, and tissue
distributions. Zimmer et al. (72) proposed a comprehen-
sive classification (Table II). All the S100A genes are
clustered on human chromosome Iq21 (71). CalB3 (9K
calbindin) is not always considered to belong to the S100
family because of its low homology with other members
(4). Our knowledge of the functions of these proteins is still
limited, but S100A1 and S100B have been relatively well
studied for their biological roles and possible target pro-
teins (71, 74).

Participation in cell growth has been suggested to be one
of the functions of S100 proteins. This is supported by
evidence that some are concentrated in tumors such as
melanoma, renal carcinoma, and thyroid cancer cells (75-
77). S100A2 is rather exceptional because it appears to be
expressed to a lesser extent in tumor than in normal tissues
(78), which implies the protein may play a role in opposi-
tion to other SI00 proteins in cell growth and/or differ-
entiation. SlOOB has been demonstrated to exert neurotro-
phic effects and cause neural extension when applied to the
extracellular space (79-81). This Ca2+ binding protein may
be involved in the control of memory or long term potentia-
tion (74) and has been suggested to contribute to the
pathology of some neural diseases, its expression in brain
being enhanced in patients with Alzheimer's disease or
AIDS (82, 83). Other S100 proteins have been also indicat-
ed to be involved in the regulation of cell growth (72).
S100A8 and S100A9, also called migration inhibitory
factor-related protein (MRP)-8 and MEP-14, respectively,
are expressed in leukocytes and monocytes in early stages
in their development, and are distributed predominantly in
the cytoplasm (84), suggesting they may activate leuko-
cytes under inflammatory conditions.

Some members of the S100 protein family participate in
Ca2+-dependent events in non-muscle cells. S100A4 inter-
acts with nonmuscle tropomyosin in the presence of Ca2+

(85), and S100A6, but not S1OOC, enhances Ca2+-induced
insulin release from permeabilized pancreatic islet cells
(86). Furthermore, S100A10 (also called calpactin light
chain) may be involved in the control of Ca2+-induced

catecholamine release from chromaffin cells (87). Since
Ca2+ plays a central role in stimulus-secretion coupling in
neural, endocrine and exocrine tissues, these S100 proteins
may modulate their secretory activities.

In this context it is of interest that cytoskeletal proteins
such as tubulin, intermediate filament protein, micro-
tubule-associated proteins, fibrillary acidic protein, and r
protein are reported to be functionally linked with mem-
bers of the S100 family (88-90). In a similar way to
calmodulin, SlOOB protein interacts with mellitin and r
protein (91), and the latter inhibits phosphorylation by
CaM kinase II (92). S100 proteins have also been reported
to inhibit the enhancement of brain protein phosphoryla-
tion due to calmodulin (93). We may propose that one of the
functions of S100 proteins is to modify the versatile effects
of calmodulin in Ca2+-signaling. S100 proteins and cal-
modulin share similarities not only in their primary struc-
tures and target proteins, but also in their interactions with
some synthetic compounds. Calmodulin antagonists and
their derivatives may also react with other Ca2+-binding
proteins with 2 or 3 EF hand domains such as SlOOB,
S100A6, or neurocalcin (94-96). Therefore, we may need
to reevaluate the conclusions derived from pharmacological
experiments using calmodulin antagonists.

It should be mentioned that several Si00 proteins also
interact with signal-mediating proteins other than EF hand
proteins. For example, SlOOB inhibits phosphorylation of
p53, the tumor suppressor protein, by protein kinase C
(PKC) (97) and S100A9 interferes with casein kinase
activity (98). Moreover, there are reports of specific
binding with annexins, first described for annexin II and
S100A10 (8). Molecular analyses have in fact been per-
formed for such interaction (99, 100). We also reported
specific binding between annexin XI and S100A6 (calcyclin)
(101) and recently annexin I and SlOOC (calgizzarin) were
found to react with each other (102). Although the biologi-
cal significance of such binding has not yet been elucidated,
S100 proteins may modify Ca2+-signaling mediated not
only by calmodulin, but also by annexins.

S100A1 and SlOOB exert an influence on glycolytic
enzymes such as fructose-l,6-bisphosphate aldolase and
glycogen phosphorylase, the activity of the former being
increased by both (103), whereas S100A1, but not SlOOB,
stimulates the glycogen phosphorylase activity (104).

2) Ca2+/phospholipid binding proteins
There are also Ca2+ binding proteins which bind phos-

pholipids in a Ca2+-dependent manner. In some cases,
including the annexins and conventional isozymes of pro-
tein kinase C (PKC), their affinity for Ca2+ and/or en-
zymatic activity thereby become higher. Therefore, these
biochemical properties allow such proteins to translocate to
cell membranes and to become active in the vicinity of the
membranes in response to an increase in Ca2+. Classifica-
tion is into two groups, the annexins and the C2 region
proteins.

2-1) Annexins. Annexins are a family of Ca2+/phospho-
lipid-binding proteins which commonly possess four re-
peats of the "endonexin fold" domain, the actual Ca2+-bind-
ing sites. Thirteen members have been identified to date,
ten in mammals (105). These proteins were given un-
related names such as lipocortin, calpactin, and calelectrin
(see Table El), before it was suggested that they might
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TABLE HI. The annexin family.

Synonyms No of
endonexin folds

M.W.
(kDa)

Proposed functions

Annexin I Lipocortin I, calpactin II, chromobindin 9

Annexin II

Annexin HI

Annexin IV

Annexin V

Annexin VI

Annexin VII

Annexin
Annexin IX
Annexin X
Annexin XI
Annexin XII
Annexin XHI

Lipocortin II, calpactin I heavy chain, protein I,
chromobindin 8

Lipocortin m, PAP-HI 35-a-calcimedin,
calphobindin HI

Lipocortin IV, protein II, chromobindin 4, PAP-II,
35-/5-calcimedin, endonexin I, 32.5K-calelectrin,

Lipocortin V, chromobindin I, PAP-I,
35-y-calcimedin, calphobindin I, endonexin n,
35K-calelectrin, VAC a, anchorin CII

Lipocortin VI, protein HI, chromobindin 20,
67-calcimedin, calphobindin II, 67K-calelectrin,
synhibin

Synexin

VAC/5

Calcyclin associated protein (CAP) 50

35-40

4

4

4

34-39

36

28-33

36

PLA2 inhibition, ion channel activity, cell
proliferation/differentiation, membrane
fusion/aggregation, secretion

PLA2 inhibition, cell proliferation/
differentiation, membrane fusion/aggregation

PLA2 inhibition, membrane fusion/aggregation,
hormone secretion

PLA2 inhibition, membrane fusion/aggregation,
secretion

PLA2 inhibition, ion channel activity,
anticoagulant, inhibition of protein kinase C

67-73 PLA2 inhibition, ion channel activity,

4

4
4
4
4
4
4

56-57

37
33
36
54
35
35

Ion channel activity, membrane fusion/
aggregation, secretion

Ion channel activity

PAP, placental anticoagulant protein; VAC, vascular anticoagulant.

have common structure(s), on the basis of their shared
biochemical and immunological properties in common
(106-110). This view was eventually proven to be right by
direct cDNA sequencing, which demonstrated common
amino acid sequences in their C-terminal regions (111,
112). Geisow and his colleagues designated these proteins
to be annexins because they may function by "annexation"
with biomembranes and membrane proteins in response to
Ca2+ (113-115).

The Ka values of annexins for Ca2+ binding are 10-1,000
fjM. and the affinity appears to be heightened by binding to
acidic phospholipids (105). Annexin VI has an exception-
ally high affinity as its FQ is 1 piM even in the absence of
phospholipids (116). The structure of the Ca2+ binding
domain for annexins is completely different from those for
EF hand proteins. Each member of the annexin family has
a similar amino acid sequence in the C-terminal region,
called the core domain, which is responsible for the Ca2+/
phospholipid binding (117). This portion in annexin V has
been reported to bind to collagen as well (118). In the core
domain, the endonexin fold with the characteristic motif
GXGTDE is highly conserved (105, 111). The core domain
contains four repeats of this sequence, with the exception of
annexin VI which possesses 8 repeats (119). The N-termi-
nal region, on the other hand, is variable and is proposed to
be responsible for their variety of functions.

Annexins have been demonstrated in a wide variety of
tissues, some being localized in the cytoplasm beneath the
plasma membrane and becoming translocated to the plasma
membrane in response to an increase in the intracellular
Ca2+ concentration. A few annexins have also been identifi-
ed in the nucleus (120-122).

Very recently, Morgan and Fernfindez found a-giardin
from the protozoa, Giardia lambia, to have a similar amino
acid sequence to annexins and therefore proposed that it
might constitute an ancestor protein (123). In accordance
with their argument, seven members were newly arrayed

within the annexin family; annexin XTV which is the former
annexin VII from Dictiostelium, annexins XV-XVH, three
products from Caenorhabditis elegans, annexin XV III from
Medicago satiua, and two isoforms of a-giardin, as annex-
ins XIX and XX.

Although annexins are proposed to be as multifunctional
as calmodulin, direct evidence is still limited. They have
been suggested to mediate membrane fusion, in line with
the fact of phospholipid binding in the presence of Ca2+.
Since Ca2+ plays a central role in exocytosis, members of
the annexin family could thereby control hormone/trans-
mitter release which necessarily involves membrane
fusion. Annexin IV causes Ca2+-dependent aggregation of
granules from the electric organ of Torpedo marmorata
(124), and annexins I, HI, and VII induce aggregation of
granules, and membrane fusion in leukocytes (125, 126)
and chromaffin cells (87, 127, 128). Morphological studies
have indicated involvement of annexin I in insulin secretion
from the pancreatic /9-cell (129), and annexin-induced
aggregation has also been verified using artificial liposomes
(130). It is also interesting that annexins V and VII possess
ion channel activity when reconstituted in lipid membranes
(131-133).

Inhibition of phospholipase A2 (PLA2) by annexins was
also demonstrated in early studies (134). PLA2 releases
fatty acids such as arachidonic acid from phospholipids.
Since arachidonic acid is metabolized to bioactive eico-
sanoids, the enzyme has been considered to play a key role
in activation of the immune response. A few members of
the annexin family have proven potential to inhibit PLA2

activity (135, 136) and since glucocorticoids, immunosup-
pressant hormones widely used in clinical applications,
induce annexin I expression (137, 138), it has been suggest-
ed that annexins may play an integral role in the inhibitory
actions of the hormones. Among PLA2 -inhibiting annexins,
both annexins I and II exhibit this action when applied to
the extracellular space (139). They could, therefore, find
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application as immunosuppressants (140). Whether inhibi-
tion of PLA2 activity by annexins results from some direct
interaction with the enzyme is argued, because excess
amounts of phospholipids reduce the effect (141). Another
extracellular influence of annexins is inhibition of blood
coagulation (142, 143). This might be related to the
demonstration that platelet membranes have a binding
activity to annexins which is sensitive to phosphatidyl-
serine (144).

It is noteworthy that expression of some annexins and
related proteins is lowered in some autoimmune diseases.
For example, production of annexin I and its binding
protein is decreased in rheumatoid arthritis (145, 146). It
has recently been reported that p56 autoantigen which
appears in rheumatoid arthritis, SjOgren's syndrome and
systemic lupus erythematosus (147), is a human homo-
logue of annexin XI (148), which was originally discovered
in our laboratory as a calcyclin (Sl00A6)-associated
protein (CAP50) (149). This autoantigen appears also in
systemic scleroderma, polymyositis, and other autoim-
mune diseases (150). Although the data still limited,
annexin homologues could clearly participate in the pathol-
ogy of some autoimmune diseases.

Annexins have also been suggested to be involved in the
control of cell proliferation and differentiation, since some
examples are known to be phosphorylated by protein
kinases related to these cell functions. For instance, annex-
ins I and II are good substrates of receptor- or non-receptor
types of tyrosine kinases (151-153). Furthermore, annex-
ins I, II and IV are phosphorylated by PKC (87, 154, 155).
Phosphorylation of annexin XI changes its intracellular
distribution (156), which might imply this annexin trans-
duces stimuli for cell proliferation/differentiation under
the control of protein kinases.

Although annexins inhibit a few enzymes as discussed
above, the only report suggesting an effect on protein
kinases concerned annexin V inhibition of PKC activity
(157). This inhibition was only observed for PKC isoforms
with a C2 domain, the Ca2+/phospholipid binding region. It
must be noted that, on the contrary to PLA2 inhibition, high
concentrations of phospholipids fail to overcome PKC
inhibition by annexin V (157).

2-2) C2 region proteins. The C2 region, originally
designated as the constant region of PKC isoforms, is
responsible for Ca2+/phospholipid-dependent activation of
PKC (158). Studies have specified that the domain is
conserved in phospholipase C (159) and phospholipase A2

(160), synaptotagmin (161), and several other proteins
(162, and Table IV). Some, if not all, proteins with a C2
region share biological properties such as Ca2+-induced
translocation from the cytosol to membrane, and interac-
tion with common intracellular receptors (see below). The
physiological functions of C2 region proteins are relatively
well elucidated as compared with EF hand proteins or
annexins.

PKC was discovered in late 1970s by Nishizuka and his
colleagues as a Ca2+-sensitive, phospholipid-dependent
protein kinase in rat brain (163) activated by diacylglycer-
ol, a product of phospholipid metabolism (158, 164). To
date, eleven isoforms have been reported. They are widely
distributed in a variety of tissues but have distinct speci-
ficities. Amino acid analysis of these isoforms revealed the
existence of 4 constant regions (C1-C4) (165). Cl is

cysteine-rich and binds diacylglycerol and phorbol esters.
C2 is the Ca2+/phospholipid binding domain composed of
~120 amino acid residues. C3 and C4 are in the catalytic
domains which bind to ATP and substrates, respectively.
a, pi, P2, and y isoforms have all these four constant
regions and are designated as conventional PKCs. Novel
PKC isoforms (6, e, TJ, 0), which lack a C2 domain, are
activated independently of Ca2+ (166, 167). Atypical PKCs
(£, T, X) possess incomplete Cl but no C2 regions and are
also insensitive to Ca2+, diacylglycerol and TPA (168).

Conventional PKCs are present dominantly in the cyto-
plasm in a basal or non-stimulated state. Increase in the
intracellular Ca*+ concentration causes PKC activation and
translocation to plasma membranes (170). The C2 region is
considered to be responsible for the translocation. There is,
however, one report demonstrating that translocation to
the plasma membranes also occurs with nPKC in the
presence of a phorbol ester (169), suggesting PKC trans-
location may not simply result from binding of Ca2+ to the
C2 region. Several proteins which bind to PKC have been
identified and suggested to determine its intracellular
distribution with receptors for activated PKC (RACKs)
being good examples (170). RACKs may be anchoring
proteins not only for PKC but other C2 region proteins, first
because they also bind to synaptotagmin and phospholipase
C (171, 172), and secondly because RACK binding to
synaptotagmin is displaced by PKC (171).

A wide variety of proteins are phosphorylated by PKC
and this kinase has been suggested to participate in regula-
tion of multiple cell functions such as cell cycle/differentia-
tion, cell growth, carcinogenesis, endocytosis/exocytosis,
muscle contraction, and gene expression (for reviews, see
Refs. 173 and 174).

Synaptotagmin (or synaptotagmin I) was originally
known as the 65 kDa vesicle protein (p65) purified from
brain synaptosome fractions (175). Although, as with S100
proteins, it was first believed to be neuron-specific, later
studies proved that some synaptotagmin isoforms are also
distributed in non-neural tissues like the lung, heart and
endocrine system (176-178). Eight isoforms have been
reported so far. They share a peculiar structure with two C2
domains, C2A and C2B, the former binding to both phos-
pholipids and syntaxin, in a Ca2+-dependent manner.

TABLE IV. C2 region proteins.
M.W. (kDa) Proposed functions

Conventional protein
kinase C

76-78 Cell cycle/ differentiation,
cell growth, carcinogenesis,
endocytosis/exocytosis,
muscle contraction, gene
expression

Exocytotic events
Eicosanoid production

Synaptotagmins 43-65
Cytosolic phospholipase 85
A,

Phospholipase C 150-154 (/}) Generation of phospholipid-
(fi, y, and 4) derived messengers

145-148 (y)
85-88 (<T)

GAP 120 Modulation of cellular
functions regulated by
small G-proteins

Rabphilin 3A 78 Adaptor protein for vesicle
transport
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Phospholipid binding requires much less Ca2+ (ED 50; low
/*M order) than that of syntaxin (200-500 jiM), except in
the case of synaptotagmins III and VII which bind syntaxin
at lower than 10//M Ca2+ (179). Synaptotagmins IV, VI,
and Vin, however, are also exceptional in that they do not
bind phospholipids or syntaxin. Synaptotagmins also inter-
act with clathrin-AP2, but independently of Ca2+. Differ-
ential roles of C2A and C2B have been suggested on the
basis of experiments using selective antibodies (180, 181).
C2A is responsible for release of transmitter by Ca2+ and
C2B is involved in inositol high polyphosphates-dependent
release and vesicle recycling. Synaptotagmins participate
in the SNARE hypothesis whereby exocytosia occurs via
sequential interaction of vesicle proteins (182, 183).

PLA2 is an enzyme which catalyzes release of fatty acids
from the sn-positions of phospholipids (184). Apart from a
14kDa form (secreted PLA2, sPLA2), which is secreted
from pancreas, there is another subtype in the cytoplasm
(cPLA2) (185). cPLA2 and sPLA2 do not share any common
sequences in their primary structures and two classes of
cPLA2 (85 kDa and 40 kDa) have been identified. Eighty-
five kilodalton cPLA2 is activated by Ca2+ and translocates
from cytosol to membranes (186), whereas 40 kDa cPLA2

is activated in a Ca2+-independent manner (187, 188, for a
review, see Ref. 189). Clark et al. pointed out that 85 kDa
cPLA2 possesses a C2 domain (called the CalB domain in
their paper, see Ref. 160) and suggested that this domain is
common to proteins which are activated and translocate to
membranes in response to an increase in intracellular Ca2+.
There is, however, one report suggesting that Ca2+ is
required for intracellular translocation, but not for the
enzyme activation (190). It has been also reported that
other divalent cations may be substituted for Ca2+ to obtain
the same effect (191).

The 85 kDa cPLA2 activity is also modulated by G-
proteins, and the enzyme preferentially catalyzes release of
arachidonic acid (184), which is metabolized to bioactive
eicosanoids. This Ca2+ binding protein is, therefore, consid-
ered to be responsible for production of prostaglandins,
leukotrienes and platelet-activating factor, and also the
resultant immune response.

The ft, y, and 6 isoforms of phospholipaee C (PLC)
possess a similar structure to the C2 domain of PKC (192,
193). The C2 domain in PLCs is the binding site for Ca2+,
RACKS, and also the phospholipid substrate. It is rather
surprising that structural analysis revealed the presence of
an EF hand structure in the N-terminal region of PLCtf
(193), since this was, to our knowledge, the first report of
one protein containing two distinct Ca2+-binding domains.
PLCy is reported to translocate to the cytoskeleton on
activation of the EGF receptor (194). GTPase activating

protein (GAP) also has a C2 domain and modulates the
GTPase activity of GTP-binding proteins (295). Rabphilin
3A which binds the small G protein, Rab 3A, has similarly
been discovered to possess a C2 domain (196). This protein
can also bind Ca2+ and phospholipids at its C-terminal
region (197) and controls intracellular vesicle transport via
inhibition of Rab3A activation by GAP (198, 199). It has
not yet been determined whether all these C2 region
proteins undergo intracellular translocation in a Ca2+-de-
pendent manner.

3) Ca2+ storage proteins (Table V)
Elevation of the cytosolic Ca2+ level is finely controlled

by Ca2+ fluxes through the plasma membrane and Ca2+

uptake/mobilization from intracellular store sites like
endoplasmic reticulum and sarcoplasmic reticulum, as
demonstrated by Ca2+-imaging using Ca2+-sensitive fluo-
rescent dyes (200). Ca2+, bound to Ca2+ storage proteins in
the Ca2+ store sites, is released by Ca2+-mobilizing cyto-
plasmic second messengers such as inositol-l,4,5-trisphos-
phate (IP3) or cyclic ADP ribose via TP3- or ryanodine-
receptors, respectively.

Calsequestrin, localized in the sarcoplasmic reticulum, is
the major Ca2+ storage protein in striated muscle (201), and
group of analogous proteins have been identified in non-
muscle and smooth muscle endoplasmic reticulum (202).
Calreticulin is one major Ca2+ storage protein, originally
identified from sarcoplasmic reticulum (203, 204), which
was suggested to be closely related to calsequestrin because
of immunocrossreactivity (205). Indeed, cDNA cloning
demonstrated these proteins to have highly similar pri-
mary structures (206, 207) with an endoplasmic retention
signal (KDEL) at their N-terminals. Several other possible
Ca2+ storage proteins have also been identified (208). It
seems that Ca2+ binds pairs of carboxyl residues preferen-
tially distributed in the tail domains called the C-domains
(209).

One of the features of these storage proteins is their high
capacity for Ca2+, and such high Ca2+-binding capacity of
these proteins enables the store sites to hold high concen-
trations of total (bound and free) Ca (approx. 5 mM, see
Ref. 210). As compared with the other groups of Ca2+

binding proteins, their affinity for Ca2+ binding is relatively
low (0.5-5 mM) and some also have high aflinity binding
sites (211). However, low affinity Ca2+-binding sites are
primarily responsible for the high Ca2+-binding capacity.
For example, the high and low affinity binding sites of
calreticulin (id values; 1 and 1,000 ^M), are capable of
binding to 1 and 25 Ca2+ ions per molecule, respectively
(211). It is notable that two proteins with 6 EF hands
(reticulocalbin and ERC-55), have been identified from

TABLE V. Ca1+ storage proteins.

Synonyms M.W. Calcium binding capacity
(kDa) (mol CaJ+ per mol)

Calsequestrin
Calreticulin

Endoplasmin
CSLP (calsequestrin-like protein)

Calregulin, CaBP (CaI+-binding protein) 3, CHP (calcium
binding reticuloplasmin) 55, CAB (Ca'+-binding protein)
63, ERp (endoplasmic reticulum protein) 60, HACBP
(high affinity calcium-binding protein)

CaBP4, ERp99, hsp90
PDI (protein disulfide isomerase)

41-44
46

100
58

42
26

10
23
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endoplasmic reticulum (212, 213). Further studies are
needed to examine whether these also play roles in Ca2+

storage.
Ca2+ storage in fact may not be the only function of the

so-called Ca2+ storage proteins. Sea urchin eggs, where
fertilization occurs in response to Ca2+ released from
intracellular stores, express a Ca2+ storage protein {214)
which is very similar to the human protein disulfide isomer-
ase and the urchin protein exhibits the enzymatic activity
(215). Moreover, there is evidence suggesting that calreti-
culin may function outside the sarcoplasmic reticulum and
is found in both the cytoplasm and nucleus (216, 217). In
the latter site, it interacts with nuclear receptors for
androgen, retinoic acid, and glucocorticoids (218, 219).
Calreticulin can also bind to the cytoplasmic domains of
integral a subunits (220). Therefore, calreticulin may
modulate signal transduction through these receptors.
Endoplasmin, another Ca2+ storage protein identified from
endoplasmic reticulum, has also been reported to be local-
ized in the nucleus (221), suggesting additional functions of
this protein.

Concluding remarks
There are a large number of Ca2+ binding proteins, and

this is especially the case of some of S100 proteins, for
which the functions remain to be elucidated. It would
clearly be promptious to conclude that all intracellular Ca2+

binding proteins play some role in Ca2+ signalling as Ca2+

receptors.
Although this could not be detailed in the present paper,

one approach which is making rapid progress is the struc-
tural analysis of Ca2+-binding protein molecules. This
method provides clues to better understanding of interac-
tions between Ca2+-binding proteins and their target
proteins, as well as specific pharmacological agents. Recent-
ly it has been proposed that the EF hand structure of the
Ca2+ receptor proteins causes a vast conformational change
as a result of Ca2+ binding, whereas such alterations are
much smaller with Ca2+ buffering proteins (4). In the near
future, it may become possible to predict whether a Ca2+-
binding protein functions as a Ca2+-receptor or just a Ca2+

buffer by analysing its three dimensional structure.
As overviewed in this article, specific Ca2+ binding

proteins are key components of signal transduction path-
ways, in some instances via modulation of protein interac-
tions and/or their enzymatic activities. In spite of recent
substantial progress, however, we have to acknowledge
that our understanding of the functions of Ca2+ binding
proteins is far from complete. We rely on more and more
evidence being forthcoming to elucidate the mechanisms
underlying transduction of Ca2+ signals at the molecular
level.

The authors thank to Ms. M. Iwahori for her secretarial help.
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